
Making delightful
tools

for sustainable (small-team) development

6 years @microsoft
VS debugger team

started murder engine 3
years ago

full time on coldblood <3

I LOVE tools!

☆ most of these tips apply to a small team (less than 8 people)
☆ HOWEVER I also learned them as a senior engineer in Visual
Studio (100+ people team)
☆ based on my own experience and what has helped us so far!

i’m not here to convince you to do your own engine

my goal is to cover how to make tools...

- tailored for the team,
- delightful and fun to work with,
- with a data-oriented mindset,

...and balance between
tools, engine and gameplay
development with 9 tips!

1 The game always
comes first

☆ start with whatever unblocks you and build from there!

think of it as “little gifts” for your future-self

it can be an extremely rewarding experience!

☆ instead of comparing yourself to
others, compare yourself with your
own progress

☆ do use other engines and see what you like about them

2 Stick to your goals

☆ first goal: use our engine in a game jam

Source: GitHub Game Bytes - June 2023

https://github.blog/open-source/gaming/game-bytes-june-2023/

☆ new goal: ship a commercial game

☆ your time is your most valuable resource
☆ goals can help you choose what to prioritize

☆ get good at estimating feature costs!

make mistakes
accept that you WILL context switch. A lot.

“that’s hard” (bad)
“probably a month” (better)
15 days (actual work)

refactoring my serialization from
reflection to source generation

1 week prototyping
3 days implementing
5 days fixing edge cases I missed
maybe add some weeks fixing edge cases here and
there while working on the game again

- keep a balance between planning vs. just doing stuff

we have a backlog of tasks and “shop around” every cycle

Source: planka

https://planka.app/

but how do you know if you’re on the right path?

☆ “one click setup” regardless of OS or device
☆ programming first with full control of how projects are built
☆ prioritize our team’s strengths

3 Never crash

make. it. deterministic.

☆ logs!!!

☆ Debug.Assert

☆ compile-time warnings

☆ leverage your own diagnostic analysis tools

support sending diagnostic data to our server
 REALLY helpful for cross platform

Source: kanboard

https://kanboard.org/

4 Make it delightful

☆ you’re spending all your time here, make it enjoyable

5 Only do it once it’s
a bottleneck

☆ do not overthink performance. use a profiler! the fix is
almost always very boring!

Source: xkcd

https://xkcd.com/1445/

cache

can we just not
call that?

☆ time spent fixing perf
refactor the entire thing

☆ Perfview!!!!

☆ differentiate “nice to have” and “must have”
☆ as a rule, we only automate tools after hitting it at least
 3 times
☆ or whenever we notice we didn’t add something cool to the
 game because it was too bureaucratic

optimization also applies to your workflow!

sprite hot reload

must rebuild the
whole game
wait 2 minutes to
see changes

fast! Quick!
can see right away how
it looks in the game
more time to try new
ideas!

load saves by dropping zip files

would procrastinate
to debug repro

super quick repro
fix a lot more bugs
faster
kinda fun

ctrl-z

had to discard
changes in the whole
file
save a lot T_T

can quickly iterate over
undo operations
be more creative when
designing maps

(…it took me 2 years to implement this one)

6 Scale horizontally

what it means to scale horizontally

☆ build modular code
☆ usually takes longer to start, but helps you finish
whatever you’re doing

☆ build modular code
☆ usually takes longer to start, but helps you finish
whatever you’re doing

what it means to scale horizontally

☆ build modular code
☆ usually takes longer to start, but helps you finish
whatever you’re doing

what it means to scale horizontally

by generating code, you get a code that is...

☆ generate code!

☆ generate code!

e.GetComponent<PositionComponent>();

e.GetPosition();

See Adventures serializing absolutely everything in C#

☆ source generation
 for serialization!

https://isadorasophia.com/articles/serialization/

☆ i’m biased

Entity

EntityWithHealth

EntityWithOwner

EntityWithForce

Character

public class Character :
 EntityWithForce
{
 private Sprite _sprite;
 private Vector2 _position;

 override void Update() { ... }
 override void Draw() { ... }
}

Source: Factorio Friday Facts #18

https://www.factorio.com/blog/post/fff-18

Entity

EntityWithHealth

EntityWithOwner

EntityWithForce

Character

Entity

EntityWithHealth

EntityWithOwner

EntityWithForce

Character

Virtual void OnDamageReceived()

Source: Factorio Friday Facts #18

https://www.factorio.com/blog/post/fff-18

Entity

HealthComponent SpriteComponent ColliderComponent

VelocityComponent PositionComponent

public readonly struct PositionComponent
{
 public readonly Vector2 Vector;
}

public readonly struct SpriteComponent
{
 public readonly Guid Sprite;
 public readonly string Animation;
}

Entity

[Filter(typeof(PositionComponent), typeof(SpriteComponent))
public class RenderSprite : RenderSystem
{
 override void Draw(World world, Entity[] entities)
 {
 foreach (Entity e in entities)
 {
 Vector2 position = e.GetPosition().Vector;
 ...

HealthComponent OwnerIdComponent ColliderComponent

VelocityComponent PositionComponent

Entity

HealthComponent OwnerIdComponent ColliderComponent

VelocityComponent PositionComponent

public readonly struct HealthComponent : Icomponent
{
 public readonly int Health { get; init; }
 public readonly int MaxHealth { get; init; }
}

[Filter(typeof(HealthComponent))]
public class DamageSystem : IMessagerSystem
{
 public void OnMessage(
 World world,
 Entity e,
 DamageReceivedMessage message) { ... }
}

HealthComponent OwnerIdComponent ColliderComponent

VelocityComponent PositionComponent

☆ all about flexibility: give yourself room to be creative
☆ quarantine your weird code!

Source: How Northlight makes Alan Wake 2 shine

https://www.remedygames.com/article/how-northlight-makes-alan-wake-2-shine

7 You don’t have to
do everything

yourself

☆ remember your goals!

are you implementing it because it’s fun or to prove you can do it?

- can you afford the time?
- does it get you closer to

your goal?

- was it proven before?
- is there anything unique

that you can do?

is the learning valuable?

if it’s for fun... if it’s to prove you can...

make decisions by budgeting your time
 do consider the trade-offs when “offloading” the
 responsibility to a library

8 Prototype,
implement, refactor

☆ invest time studying the best industry approaches
☆ prototype in a hello world project!
 (...or wherever is cheaper, really)

☆ don’t overthink the design, 90% of the time your idea might
fail:
 - not fun
 - technical blocker

study industry approaches (can skip)

prototype and try it out. does it break
everything? if so, does it simplify things?

decide to implement or not

implement!

???

fix edge cases (you will overlook
something...), simplify and abstract

think of
something else

creating my custom dialogue language

1 week just studying several
approaches: blackboards...

1 week asking around, using inkle,
seeing what I like

2 weeks implementing the language

refine it forever

9 Trust yourself!

☆ most people giving advice on the internet didn’t ship a game
☆ even advice coming from experienced devs might not apply
 to you, so it’s okay to disagree!
☆ selectively ignoring advice is how you innovate

☆ it’s all about the journey!

1. Game always comes first
2. Stick to your goals
3. Never crash
4. Make it delightful
5. Only do it once it’s a
5. bottleneck

6. Scale horizontally
7. Don’t have to do
7. everything yourself
8. Prototype, implement,
8. refactor
9. Trust yourself!

Questions?

☆ coldbloodinc.studio
☆ @isadora.codes
☆ github.com/isadorasophia/murder

	Slide 1: Making delightful tools
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6: 1 The game always comes first
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: 2 Stick to your goals
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26: 3 Never crash
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35: 4 Make it delightful
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42: 5 Only do it once it’s a bottleneck
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53: 6 Scale horizontally
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73: 7 You don’t have to do everything yourself
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80: 8 Prototype, implement, refactor
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86: 9 Trust yourself!
	Slide 87
	Slide 88
	Slide 89: 1. Game always comes first 2. Stick to your goals 3. Never crash 4. Make it delightful 5. Only do it once it’s a 5. bottleneck
	Slide 90: Questions?

